Introduction
In this part we’ll see how we can represent a system using its states.
State feedback
We can represent a system using its space-state representation.
Given an input signal, $r(t)$, that we multiply with a constant, $K_r$.
We also have noise in the system.
Our feedback is also multiplied with a matrix $L_u$.
$$ x = \begin{bmatrix} x_1 \newline x_2 \newline \vdots \newline x_n \end{bmatrix} $$
We can represent our system as: $$ \begin{cases} \dot{x} & = Ax + Bu + B_v \cdot v \newline y & = Cx \end{cases} $$
We can define $u(t)$ as: $$ u = K_r r - L_u x $$
Let’s find the transfer function $G_{ry}$, so we set the noise to zero. $$ \begin{cases} \dot{x} & = Ax + Bu\newline y & = Cx \end{cases} $$
$$ \begin{cases} \dot{x} & = Ax + B(K_r r - L_u x)\newline y & = Cx \end{cases} $$
$$ \begin{cases} \dot{x} & = (A - BL_u)x + BK_r r \newline y & = Cx \end{cases} $$
If we take the Laplace transform of the space-state representation: $$ \begin{cases} sX(s) & = (A - BL_u)X(s) + BK_r R(s)\newline Y(s) & = CX(s) \end{cases} $$
$$ \begin{cases} sX(s) - (A - BL_u)X(s) & = BK_r R(s)\newline Y(s) & = CX(s) \end{cases} $$
$$ \begin{cases} (sI - A + BL_u)X(s) & = BK_r R(s)\newline Y(s) & = CX(s) \end{cases} $$
$$ \begin{cases} X(s) & = (sI - A + BL_u)^{-1}BK_r R(s)\newline Y(s) & = CX(s) \end{cases} $$
$$ \begin{cases} X(s) & = (sI - A + BL_u)^{-1}BK_r R(s)\newline Y(s) & = C(sI - A + BL_u)^{-1}BK_r R(s) \end{cases} $$
Which means: $$ G_{ry}(s) = \dfrac{Y(s)}{R(s)} = C(sI - A + BL_u)^{-1}BK_r $$
The characteristic equation for this is $det(sI - A + BL_u) = 0$
Loop transfer function
We won’t cover the calculations to prove this, but: $$ L(s) = L_u(sI - A)^{-1} B $$
Which means: $$ S(s) = \dfrac{1}{1 + L(s)} = \dfrac{1}{1 + L_u(sI - A)^{-1} B} $$
$$ T(s) = \dfrac{L(s)}{1 + L(s)} = \dfrac{L_u(sI - A)^{-1} B}{1 + L_u(sI - A)^{-1} B} $$
Let’s now go back, let’s find $G_{ru}$ this time: $$ U(s) = K_rR(s) - L_uX(s) $$
$$ U(s) = K_rR(s) - L_u(sI - A + BL_u)^{-1} BK_r R(s) $$
$$ G_{ru}(s) = \dfrac{U(s)}{R(s)} = K_r - L_u(sI - A + BL_u)^{-1} BK_r $$
Finally, let’s also find $G_{vy}$, therefore we set $r = 0$. $$ \begin{cases} \dot{x} & = Ax - BL_ux + B_v v \newline y & = Cx \end{cases} $$
$$ \begin{cases} \dot{x} & = (A - BL_u)x + B_v v \newline y & = Cx \end{cases} $$
Taking the Laplace transform: $$ \begin{cases} sX(s) & = (A - BL_u)X(s) + B_v V(s) \newline Y(s) & = CX(s) \end{cases} $$
$$ \begin{cases} (sI - A + BL_u)X(s) & = B_v V(s) \newline Y(s) & = CX(s) \end{cases} $$
$$ \begin{cases} X(s) & = (sI - A + BL_u)^{-1} B_v V(s) \newline Y(s) & = CX(s) \end{cases} $$
$$ \begin{cases} X(s) & = (sI - A + BL_u)^{-1} B_v V(s) \newline Y(s) & = C(sI - A + BL_u)^{-1} B_v V(s) \end{cases} $$
$$ G_{vy}(s) \dfrac{Y(s)}{V(s)} = C(sI - A + BL_u)^{-1} B_v $$
Usually, $K_r$ is found using the fact that we want low-frequency amplification, meaning $G_{ry}(0) = 1$
This means that: $$ K_r = \dfrac{1}{C(sI - A + BL_u)^{-1}B} $$
State feedback requires that our control signal, $u(t)$ affects all states. This means that: $$ det(S) \neq 0 $$
Where $S$: $$ S = [B AB A^2B \ldots A^{n-1}B] \ | \ \text{For clarification, this is a long series of matrix multiplications} $$
We call $S$ for the controllability matrix. The system is controllable if $det(S) \neq 0$.
Example
We have the following system which has feedback such that: $$ G_{ry}(s) = \dfrac{8}{s^2 + 4s + 8} $$
The given dynamics for the system is represented as: $$ \begin{cases} \dot{x_1} & = -2x_1 + x_2 \newline \dot{x_2} & = -5x_1 + 2u \newline y & = x_1 \end{cases} $$
We have no noise present in this system.
Let’s firstly determine if this system is controllable.
Let’s define all matrices: $$ x = \begin{bmatrix} x_1 \newline x_2 \end{bmatrix} $$
$$ A = \begin{bmatrix} -2 & 1 \newline -5 & 0 \end{bmatrix} $$
$$ B = \begin{bmatrix} 0 \newline 2 \end{bmatrix} $$
$$ C = \begin{bmatrix} 1 & 0 \end{bmatrix} $$
$$ D = \begin{bmatrix} 0 \end{bmatrix} $$
The controllability matrix: $$ S = \begin{bmatrix} B & AB \end{bmatrix} $$
$$ AB = \begin{bmatrix} 2 \newline 0 \end{bmatrix} $$
$$ S = \begin{bmatrix} 0 & 2 \newline 2 & 0 \end{bmatrix} $$
$$ det(S) = -4 \neq 0 $$
Therefore, this system is controllable.
Let us now find $L_u$ and $K_r$ such that $G_{ry}(0) = 1$.
Let’s first find $L_u$.
$$ L_u = \begin{bmatrix} l_1 & l_2 \end{bmatrix} $$
$$ C(sI - A + BL_u)^{-1}B K_r $$
$$ \begin{bmatrix} 1 & 0 \end{bmatrix} \left( \begin{bmatrix} s + 2 & -1 \newline 5 & s \end{bmatrix} + \begin{bmatrix} 0 \newline 2 \end{bmatrix} \begin{bmatrix} l_1 & l_2 \end{bmatrix} \right)^{-1} \begin{bmatrix} 0 \newline 2 \end{bmatrix} K_r $$
$$ \begin{bmatrix} 1 & 0 \end{bmatrix} \left( \begin{bmatrix} s + 2 & -1 \newline 5 & s \end{bmatrix} + \begin{bmatrix} 0 & 0 \newline 2l_1 & 2l_2 \end{bmatrix} \right)^{-1} \begin{bmatrix} 0 \newline 2 \end{bmatrix} K_r $$
$$ \begin{bmatrix} 1 & 0 \end{bmatrix} \left( \begin{bmatrix} s + 2 & -1 \newline 5 + 2l_1 & s + 2l_2 \end{bmatrix} \right)^{-1} \begin{bmatrix} 0 \newline 2 \end{bmatrix} K_r $$
As we defined earlier, the characteristic equation is $det(sI - A + BL_u) = 0$
Which means: $$ (s + 2)(s + 2l_2) + (5 + 2l_1) = 0 $$
$$ s^2 + s2l_2 + 2s + 4l_2 + 5 + 2l_1 = 0 $$
$$ s^2 + (2l_2 + 2)s + 4l_2 + 5 + 2l_1 = 0 $$
We knew that: $$ G_{ry}(s) = \dfrac{8}{s^2 + 4s + 8} $$
Which must mean that: $$ \begin{cases} 2l_2 + 2 & = 4 \newline 4l_2 + 5 + 2l_1 & = 8 \end{cases} $$
We find that $l_1 = 1, l_2 = -\frac{1}{2}$, which means that: $$ \boxed{L_u = \begin{bmatrix} 1 & -\frac{1}{2} \end{bmatrix}} $$
Let’s now find $K_r$. $$ K_r = \dfrac{1}{C(sI - A + BL_u)^{-1} B} $$
This is just some basic matrix operations: $$ K_r = \ldots = \boxed{4} $$