Overview

Part 2 - Convexity I

TMA947
Date: September 3, 2025
Last modified: September 4, 2025
7 min read
TMA947_2

Outline

In this part, we will cover the following topics:

  • Convex sets
  • Polytopes
  • Polyhedra
  • Cones

We will start by defining what makes a set convex.

Convex Sets

Definition: Convex Set

A set $S \subseteq \mathbb{R}^n$ is called convex if, $$ \lambda \mathbf{x}_1 + (1 - \lambda) \mathbf{x}_2 \in S \begin{cases} \forall (\mathbf{x}_1, \mathbf{x}_2) \in S \newline \lambda \in (0,1) \end{cases} $$

Example of a convex set and non-convex set
Example of a convex set and non-convex set

Examples

By definition, $\emptyset$ is convex.

The set $\{\mathbf{x} \in \mathbb{R}^n \mid \Vert \mathbf{x} \Vert \leq a \}$ is convex $\forall a \in \mathbb{R}$.

However, the set $\{\mathbf{x} \in \mathbb{R}^n \mid \Vert \mathbf{x} \Vert = a \}$ is not convex for any $a > 0$.

Example of a convex set and non-convex set
Example of a convex set and non-convex set
Proposition: Convex Set Intersection

Let $S_k \in \mathbb{R}^n$ for $k = 1, \ldots, K$ be convex.

Then, the intersection, $$ S \coloneqq \bigcap_{k=1}^K S_k \ \text{ is convex.} $$

Proof

Let $\mathbf{x}_1, \mathbf{x}_2 \in S$ and $\lambda \in (0,1)$. Since $\mathbf{x}_1, \mathbf{x}_2 \in S$, we have that $\mathbf{x}_1, \mathbf{x}_2 \in S_k$ for all $k = 1, \ldots, K$. Each $S_k$ is convex, thus, $$ \lambda \mathbf{x}_1 + (1 - \lambda) \mathbf{x}_2 \in S_k, \ \forall k = 1, \ldots, K $$ Hence, $\lambda \mathbf{x}_1 + (1 - \lambda) \mathbf{x}_2$ lies in all the $S_k$ simultaneously, i.e., $$ \lambda \mathbf{x}_1 + (1 - \lambda) \mathbf{x}_2 \in S = \bigcap_{k=1}^K S_k \ _\blacksquare $$

Note

Unions of convex sets might not be convex.

Examples of the union of convex sets
Examples of the union of convex sets

Convex Hull

Definition: Convex Hull

The convex hull of a finite set of points, $\{\mathbf{v}_1, \ldots, \mathbf{v}_k \} \subseteq \mathbb{R}^n$ is defined as, $$ \mathrm{conv} \ V \coloneqq \{\lambda_1 \mathbf{v}_1 + \ldots + \lambda_k \mathbf{v}_k \mid \lambda_1, \ldots, \lambda_k \geq 0 \sum_{i=1}^k \lambda_i = 1 \} $$

Definition: Properties of the Convex Hull

The convex hull of the set $S \subseteq \mathbb{R}^n$, is the set with any of the following properties,

  • (1) It is the unique minimal convex set containing $S$.
  • (2) It is the intersection of all convex sets containing $S$.
  • (3) It is the set of all convex combinations of points in $S$.
Construction of the convex hull
Construction of the convex hull

From (3), any point in the convex hull can be expressed as a convex combination of points in $S$.

An interesting question is how many points do we need to construct the convex hull?

Theorem: Carathéodory’s Theorem

Let $\alpha \in \mathrm{conv}(S)$, where $S \subseteq \mathbb{R}^n$.

Then $\alpha$ can be expressed as a convex combination of at most $n+1$ points in $S$.

Polytopes

Definition: Polytope

A set $P \subseteq \mathbb{R}^n$ is called a polytope if it is the convex hull of finitely many points.

Note

A polytope will always have straight edges. So, a circle is not a polytope (since the circumference is curved and can not be expressed with finitely many points).

Definition: Extreme Point

A point $\mathbf{v}$ of a convex set $S$ is called an extreme point if, $$ \mathbf{v} = \mathbf{x}_1 = \mathbf{x}_2 \begin{cases} \mathbf{v} = \lambda \mathbf{x}_1 + (1 - \lambda) \mathbf{x}_2 \newline \mathbf{x}_1, \mathbf{x}_2 \in S \newline \lambda \in (0,1) \end{cases} $$

Theorem: Extreme Points of a Polytope

Let $P$ be the polytope $\mathrm{conv}(V)$, where $V = \{\mathbf{v}_1, \ldots, \mathbf{v}_k \}$. Then, $P$ is equal to the convex hull of its extreme points.

Extreme points of different polytopes
Extreme points of different polytopes

Polyhedra

Definition: Polyhedron

A set $P$ is called a polyhedron if there exists a matrix $A \in \mathbb{R}^{n \times m}$ and a vector $\mathbf{b} \in \mathbb{R}^n$ such that, $$ P \coloneqq \{\mathbf{x} \in \mathbb{R}^m \mid A\mathbf{x} \leq \mathbf{b} \} $$

Note

$A\mathbf{x} \leq \mathbf{b}$ means that, $$ \mathbf{a}_i^T \mathbf{x} \leq b_i, \ \forall i = 1, \ldots, n $$ where $\mathbf{a}_i^T$ is the $i$-th row of $A$ and $b_i$ is the $i$-th element of $\mathbf{b}$. Further, $\{\mathbf{x} \in \mathbb{R}^m \mid A\mathbf{x} \leq \mathbf{b} \}$ is a half-space. A polyhedron is the intersection of $n$ half-spaces $\implies$ a polyhedron is a convex set (by our previous proposition).

Half-space defined by a linear inequality
Half-space defined by a linear inequality
Example: Polyhedron

Let $A = \begin{bmatrix} 1 & 2 \newline -2 & 1 \newline 0 & -1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 6 \newline -2 \newline -1 \end{bmatrix}$. This gives the following system of inequalities, $$ \begin{cases} x_1 + 2x_2 \leq 6 \newline -2x_1 + x_2 \leq -2 \newline -x_2 \leq -1 \end{cases} $$

Polyhedron defined by the intersection of half-spaces
Polyhedron defined by the intersection of half-spaces
Theorem: Extreme Points of a Polyhedron

Let $\mathbf{x}^{\prime} \in P \{\mathbf{x} \in \mathbb{R}^m \mid A\mathbf{x} \leq \mathbf{b} \}$, where $A \in \mathbb{R}^{n \times m}$, $\mathrm{rank}(A) = m$ and $\mathbf{b} \in \mathbb{R}^n$.

Further, let $A^{\prime} \mathbf{x}^{\prime} = \mathbf{b}^{\prime}$ be the equality subsystem of $A\mathbf{x} \leq \mathbf{b}$, i.e., $\mathbf{A}^{\prime}$ contains all rows of $A$ where we have $(A \mathbf{x}^{\prime})_i = b_i$.

Then, $\mathbf{x}^{\prime}$ is an extreme point of $P$ if and only if $\mathrm{rank}(A^{\prime}) = m$.

Example: Continued

Let $\mathbf{x}^{\prime} = \begin{bmatrix} \frac{3}{2} \newline 1 \end{bmatrix}$. Then, $$ \begin{align*} A \mathbf{x}^{\prime} & = \begin{bmatrix} \frac{7}{2} \newline -2 \newline -1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 6 \newline -2 \newline -1 \end{bmatrix} \newline A \mathbf{x}^{\prime} \leq \mathbf{b} & \implies \begin{bmatrix} \frac{7}{2} \newline -2 \newline -1 \end{bmatrix} \leq \begin{bmatrix} 6 \newline -2 \newline -1 \end{bmatrix} \end{align*} $$ Which means, $$ \mathbf{A}^{\prime} = \begin{bmatrix} -2 & 1 \newline 0 & -1 \end{bmatrix}, \mathbf{b}^{\prime} = \begin{bmatrix} -2 \newline -1 \end{bmatrix} $$ We can see that $\mathrm{rank}(\mathbf{A}^{\prime}) = 2 = m$, thus $\mathbf{x}^{\prime}$ is an extreme point of $P$.

Example: Continued

Now, consider a new point $\mathbf{x}^{\prime}_2 = \begin{bmatrix} 2 \newline 1 \end{bmatrix}$. Then, $$ \begin{align*} A \mathbf{x}^{\prime}_2 & = \begin{bmatrix} 4 \newline -3 \newline -1 \end{bmatrix} \newline A \mathbf{x}^{\prime}_2 \leq \mathbf{b} & \implies \begin{bmatrix} 4 \newline -3 \newline -1 \end{bmatrix} \leq \begin{bmatrix} 6 \newline -2 \newline -1 \end{bmatrix} \end{align*} $$ Which means, $$ \mathbf{A}^{\prime}_2 = \begin{bmatrix} 0 & -1 \end{bmatrix}, \mathbf{b}^{\prime}_2 = \begin{bmatrix} -1 \end{bmatrix} $$ We can see that $\mathrm{rank}(\mathbf{A}^{\prime}_2) = 1 \neq m$, thus $\mathbf{x}^{\prime}_2$ is not an extreme point of $P$.

Cones

Definition: Cone

A set $C \subseteq \mathbb{R}^n$ is a cone if, $$ \lambda \mathbf{x} \in C, \ \forall \mathbf{x} \in C, \ \lambda > 0 $$

Examples of cones
Examples of cones
Example: Convex Cone

Let $A \subseteq \mathbb{R}^{n \times m}$ then, $C \coloneqq \{\mathbf{x} \in \mathbb{R}^m \mid A\mathbf{x} \leq 0 \}$ is a convex cone.

It is quite simple to prove this, assume that $\mathbf{x} \in C$ and $\lambda > 0$, $$ A(\lambda \mathbf{x}) = \underbrace{\underbrace{\lambda}_{> 0} \underbrace{A\mathbf{x}}_{\leq 0}}_{\leq 0} \ _\blacksquare $$

Representation Theorem

Theorem: Representation Theorem

Let $Q = \{\mathbf{x} \in \mathbb{R}^m \mid A\mathbf{x} \leq \mathbf{b} \}$ (polyhedron) and let $\{\mathbf{v}_1, \ldots, \mathbf{v}_k \}$ be its extreme points. Further, we define $P \coloneqq \mathrm{conv}(\{\mathbf{v}_1, \ldots, \mathbf{v}_k \})$ (polytope) and $C \coloneqq \{\mathbf{x} \in \mathbb{R}^m \mid A\mathbf{x} \leq 0 \}$ (cone). Then, $$ \begin{align*} Q & = P + C \newline & = \{\mathbf{x} \in \mathbb{R}^m \mid \mathbf{x} = \mathbf{u} + \mathbf{v}, \ \mathbf{u} \in P, \ \mathbf{v} \in C \} \end{align*} $$

Corollary: Bounded Polyhedron

A bounded polyhedron is a polytope.

Let’s state the pros and cons of polytopes and polyhedra.

  • Polytope
    • Pros: Easy to get extreme points (by definition).
    • Cons: Hard to check if new point is inside.
  • Polyhedron
    • Pros: Easy to check if new point is inside.
    • Cons: Hard to get extreme points (need to check intersection of half-spaces, grows combinatorially, infeasible for large problems).